```
function SimulatedAnnealing(initialState, temperature, coolingRate)
currentSolution = initialState
bestSolution = currentSolution
currentEnergy = calculateEnergy(currentSolution)
bestEnergy = currentEnergy
while temperature > threshold do
newSolution = generateNeighbor(currentSolution)
newEnergy = calculateEnergy(newSolution)
if newEnergy < currentEnergy then
currentSolution = newSolution
currentEnergy = newEnergy
if newEnergy < bestEnergy then
bestSolution = newSolution
bestEnergy = newEnergy
else
if acceptProbability(currentEnergy, newEnergy, temperature) > random(0, 1) then
currentSolution = newSolution
currentEnergy = newEnergy
temperature = temperature coolingRate
return bestSolution
end function
function generateNeighbor(solution)
// 根据当前解生成一个邻近解
end function
function acceptProbability(energy1, energy2, temperature)
return exp((energy1 - energy2) / temperature)
end function
```
在这个伪代码中,`initialState` 是算法开始时的初始解,`temperature` 是算法的初始温度,`coolingRate` 是每次迭代后温度降低的比例。`threshold` 是一个很小的值,当温度低于这个值时,算法停止。
模拟退火算法通过逐渐降低温度来减少接受较差解的概率,从而在最终收敛到一个较为满意的解。这种方法在解决复杂的组合优化问题时表现出了良好的性能。